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SUMMARY 

Three-Dimensional linear secondary instability theory is extended for 
compressible boundary layers on a flat plate in the presence of finite amplitude 
Tollmien-Schlichting (T-S) wave. The focus is on principal parametric resonance 
responsible for strong growth of subharmonics in low disturbance environment. 

I. INTRODUCTION 

Theoretically or experimentally, the compressible stability theory lacks 
a firm connection with boundary-layer transition. "There is little doubt 
that transition is preceded by linear instability in many instances, but the way 
these individual unstable waves,act, alone or in combination , to trigger the 
transition process is not known:' [l]. The nonlinear theories and the secondary 
instability that are much a prominent feature of incompressible stability theory 
do not exist for compressible boundary layer. 

Recently, Erlebacher and Hussaini, [2,3] by using direct simulation of 
parallel boundary layer, generated numerically a high Mach number vortical 
structure (peak-valley) similar to that observed and computed for incompressible 
flows. 

Stimulated by this work, we formulated the secondary three-dimensional 
instability problem for compressible boundary layers. In this paper, we 
investigate theoretically the effect of finite amplitude two-dimensional (2D) 
wave on the growth of three-dimensional (3D) perturbations in compressible 
boundary layers. Hence, this paper covers only a range of Mach numbers up to 
the transonic, where the critical primary disturbance is 2D. For supersonic 
boundary layers, the critical primary disturbance is 3D, and it is investigated 
by the author elsewhere. An analysis similar to that of Herbert [ 4 ] ,  
Herbert et al. [ 5 ]  and Nayfeh [ 6 ]  is followed here but spatial stability is 
considered for both primary and secondary instabilities. 

The primary instability leads to the growth of T-S waves and a streamwise 
almost periodic modulation of the flow. We study the linear stability of this 
flow with respect to spanwise periodic 3D disturbance. Floquet theory gives as 
a solution to the stability equations, all various types of resonance. We 
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consider the case of principle parametric resonance responsible for strong 
growth of subharmonics in low disturbance environment. 

IT. PRIMARY INSTABILITY AND THE BASIC FLOW 

We consider the primary instability of the 2D compressible boundary layer on 
a flat plate, with respect to 2D quasi-parallel spatially growing T-S 
disturbances. The critical disturbance is 2D up to the transonic range of Mach 
numbers [7]. The flow field is governed by the 2D compressible Navier-Stokes 
equations,the energy equation and the state equation. Dimensionless quantities 
are introduced by using the reference velocity Ur and the reference length 
L = fm, so that Reynolds number is given by R = fm, where x measures 
the distance from the leading edge of the plate, and& is the fluid kinematic 
viscosity. The thermodynamic and transport properties of air (treated as 
perfect gas) are made dimensionless using their corresponding freestream values. 

At sufficiently large distance from the leading edge, primary instability 
These 

I 
of the compressible laminar flow occurs with respect to T-S disturbances. 
disturbances take the traveling wave form, 

exp [i(jD(dx -Ut)] + C.C. 

Where the y-axis is defined normal to the flat plate, u and v are the 
disturbance velocities, p is the disturbance pressure, t is the disturbance 
temperature, p is the disturbance density. p is the disturbance viscosity, and 

For the spatial stability analysis o( is a complex wavenumber given by 
o( = W r +  io(; and d is a real disturbance frequency, and C.C. denotes complex 
conjugate terms. The eigensolutions u,v,p and t are governed by a six-order 
system of equations that is given in reference 9. The density disturbance is 
related to the temperature and pressure disturbances through the state equation, 

while the viscosity disturbance is related to the temperature disturbance by 

( 3 )  
p=(d\l/dT)t= p t  n 

- 
where p and are the mean-flow density and viscosity respectively, f is the 
ratio of specific heats and M is the freestream Mach number. The six-order 
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system is numerically integrated as initial value problem using a combination of 
shooting [8] and Newton-Raphson iteration technique that employs a Gram-Schmidt 
orthonormalization procedure. The solution of this eigenvalue problem is 
calculated by the author elsewhere [7,9]. 

The linear stability theory of primary instability provides e for a givenW 
and R. Then the integration of the growth rate - M i  gives the amplification 
factor , 

(4) In ( A / A, ) = -2jR o(i dR 
"P 

where A, is an arbitrary initial amplitude of the primary instability at R o p  (R 
where the onset of the primary wave) . The eigensolutions may be normalized 
such that A measures directly the maximum r.m.s. value of the streamwise 
disturbance, that is 

2 
( 5 )  max lu(y)l = 1/2 

0 5 Y < ~  

Since the primary instability of boundary -layer flows is induced by viscosity, 
the growth rates and amplification factors here are typically very small. 

Now the basic state under consideration is composed of the sum of the 2D 
compressible mean flow and a finite amplitude A of the primary T-S wave, that is 

Where 

A = A ,  exp(-( w i  dx), assumed constant, and 

111. SECONDARY INSTABILITY 

We consider the 3D quasi-parallel spatial subharmonic instability of the 
basic state given by ( 6 ) .  The finite amplitude primary wave acts as a 
parametric exitation on the secondary instability. Following the analysis of 
Herbert [4,5] , Nayfeh [ 6 ] ,  and El-Hady [lo] we apply Floquet theory and express 
the secondary wave using the normal mode concept, 
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( 7 )  

+c.c. 

h 

I h 

w5 = exp(jfdx)w(y) exp(2 i0) sin p z  + C.C. 
h 

where /3 is a spanwise real wavenumber, and Y = fr+ iyi is a characteristic 
exponent. spatial growth rate of the secondary wave is given by yr, while 
yj can be interpreted as a shift in the streamwise wavenumber. In our 
calculations, we consider only the case of vi = 0, that is the secondary wave is 
perfectly synchronized with the basic state. 

The 

The secondary wave (7) is superposed on the basic state ( 6 )  and the result 
is substituted into the dimensionless Navier-Stokes equations. The meam flow 
plus the 2D T-S quantities are substracted, and the resulting equations are 
linearized in the secondary disturbances. Then one obtains an eigenvalue 
problem that can be written as 

( 9 )  

- I  2 - I  
z 7  ) 

T-'(gZ,-T DTZ3+DZ + P Z  ) + G ( y M  Z 6 - T  
3 4 

+ A (a\) = 0 

- 1  - - I  - - I  
+( T DU - DP R g ) Z3- (&I) P R g (DZS + 24 ) 

-\ A A - \  2 + g Zg - R D( DU) 2, - p R DU Z 8  + A (a,) + A (bt) = 0 P 

- \  - - I  - 
-(m+2) R D ( P  DZS ) - m R Dr ( g Z l  + /3 Z q  ) + DZ6 

h -I 2 
- y R DU g 2, + A (a,) + A (bg) = 0 
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2 
- p Z6+A(a ) + A  (bq)=O 4 

- -\ 4 F\ 

(12) -2M ),I R DU ( Z2 + g Zs )+ T DT Z3 - M T G Z6 

- \  -I - -  2 
- R  Pr ( 2 2  D - DZ )+A(a5)+A (bg)=O 8 P  P 8 

where 

h 4 r\ 4 

z 4 = w ’  Z, = u  , Z t =  Du , Z 3 = v  , 

h 4 4 A 
Z 5 = D w  , Z 6 = p  , Z = t  , Z8 = Dt 7 

- I  I 
G = T  ( g U - l i W )  

A 2 
M = ( Y - L ) M  

also Pr is Prandtl number, D=d/dy, and m=2(e-1)/3 is the ratio of the 
coefficients of viscosities, where e=O corresponds to the Stokes hypothesis. 

The boundary conditions are 

ZI =zs=z4=z, = o  at y= 0 



I Equations (8 ) - (12 )  govern the secondary 3D instability of compressible 2D 
flows. They represent the mass, x-momentum, y-momentum, z-momentum, and energy 
equations respectively. The coefficients of A and A2 (ai, bi, i=1-5 ) are given 
in Appendix A. The coefficients of A in the mass equation and those of A* in 
all other equations are new in this system of equations in contrast to the 
secondary instability equations for incompressible flows. These coefficients 
are present mainly due to the density disturbance of both primary and secondary 
instabilities. In the incompressible limit equations (8)-(12) reduce exactly to 
that given by El-Hady [ l o ] .  When A=O,the system of equations (8)-(13) govern a 
primary subharmonic 3 D  wave. 

The system of equations (8)-(12) can be written as eight complex equations 
in the form, 

DZI - Z2 = 0 

DZ + c2 DZ3 + c3 = 0 3 

DZ + c DZ5 + c5 = 0 5 4  

DZ + c6 DZ6 + c = 0 
6 7 

DZ, - Z8 = 0 

where the CIS are quadratures in the primary and secondary disturbance 
quantities, and the overbar indicates a complex conjugate. Equations ( 1 4 )  are 
numerically integrated as initial value problem from y = ye (edge of the 
boundary layer) to the wall. The eigenvalue search used a Newton-Raphson 
iteration technique to satisfy the last boundary condition at the wall. A well 
tested code SUPPORT [ a ]  is used which is coupled with an orthonormalization test 
based on the modified Gram-Schmidt procedure to overcome the stiffness of the 
integrated system of equations. 

h 

The linear stability theory of the secondary instability provides f for a 
given P and R. Then the integration of the growth rate vr gives the 
amplification factor, 



where sois an arbitrary initial amplitude of the secondary instability at ROs (R 
where the onset of the secondary wave) . The secondary subharmonic instability 
is believed to originate from a strong mechanism of combined tilting and 
stretching of the vortices such as the case of incompressible flows [ l o ] ,  thus 
the growth rates and amplification factors are expected to be large as they 
occur on a convective length scale. 

IV. RESULTS AND DISCUSSION 

For the incompressible limit (M = 0), our compressible secondary 
instability code gives results that are in full agreement with those obtained by 
Herbert et a1.[5] and by El-Hady [lo]. All results reported here are for the 
nondimensional frequency F = 0 / R = 60E-6 , that remains fixed as a wave of 
fixed physical frequency travels downstream. 

At M = 0, a primary 2D instability grows between Rop = 554 and ElP = 1052 
(first and second neutral points) reaching a maximum amplification ractor of 
A/AO = 41.68. As Mach number increases, the growth rates of the primary 2D 
waves decrease as shown in Fig.(l). Also the first and second neutral points, as 
well as the streamwise location where the maximum growth rate to 
the left, they occur earlier upstream as Mach number increases. Fig.(2) shows a 
reduction in the amplification factor of the primary 2D instability as Mach 
number increases. 

occursr shift 

Almost in the same region where the primary 2D waves are growing, a broad 
band of spanwise wavenumbers of primary 3D subharmonic waves are subject to 
amplification. Fig.(3) shows the growth rate curves of these primary 3D 
subharmonics (F = 30E-6) for different Mach numbers. These curves possess the 
same features of the primary 2D waves of having lower growth rates that shift to 
lower R as Mach number increases. Fig.(4) shows the amplification factors of 
these primary subharmonics. Both Figs.(3) and (4) suggest that the growth rates 
and amplification factors of the primary subharmonics are typically so small to 
bear any resemblance to experimentally observed transition. 

However, the growth rates shown in Fig.(S) as function of the spanwise 
wavenumber B =10E+3 P / R  for secondary 3D subharmonics, are much larger than 
those for primary 20 waves or primary 3D subharmonics. This strong growth is 
due to the parametrical exitation by the finite amplitude primary 2D wave. 
Fig.(5) is calculated at R=850 and a primary 2D amplitude A =.Ol, for different 
Mach numbers. For high spanwise wavenumbers (B+.225), compressibility appears 
to have a stabilizing effect on the secondary subharmonic instability. In other 
words, the secondary subharmonic instability is largest at M = 0, and decreases 
as Mach number increases. But for low spanwise wavenumbers (BC.225) the effect 
of compressibility depends on the value of the spanwise wavenumber. 

At fixed F and R ,  results for different Mach numbers show a destabilizing 
effect ( higher growth rates for the secondary subharmonic ) as the primary 2D 
amplitude A increases. At R.11050, Fig.(6) illustrates the destabilizing effect 
of increasing A for M =0.8 compared with that for M -0. Fig.(6) reveals that 
the influence of compressibility onsecondary subharmonics is not the only function 
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of the spanwise wavenumber, but also is a function of the primary 2 D  amplitude. 
While at A1.01 compressibility i s  stabilizing for large values of B and 
destabilizing for small values of B, it has a destabilizing influence on the 
secondary subharmonics at As.002 for all range of spanwise wavenumbers. The 
figure also shows that at very small amplitudes, considerable growth rates exist 
in a small band of wavenumbers, that extend to larger values as the amplitude 
increases. 

Fig.(7) shows the effect of Reynolds number R on the growth of the 
secondary subharmonics at M -0.8. As R increases , an increase in the growth 
rates exist at fixed F and A .  

To evaluate the overall effect of compressibility on the secondary 
subharmonics, we can combine the influence of increasing the amplitude A of the 
primary 2D wave and increasing R for various Mach numbers at fixed F. For 
comparison purposes, the amplification factor of the subharmonic i s  calculated 
using equation (15) from Ros (onset of the secondary subharmonic instability) to 
any R downstream. For different Mach numbers, Fig. (8) shows the variation of 
the growth rates of the secondary subharmonics with R at a spanwise wavenumber 
B=.15. The initial primary 2D amplitude used for these calculations is A1.001. 
Fig.(9) shows the amplification factors decreasing from about 29 at M =O. to 12 
at M =0.8. 

Figs.(8) and (9) indicate that while the growth rates and amplification 
factors of the secondary subharmonics are decreased by increasing Mach 
number,the onset of the secondary instability is almost not affected. This is 
probably due to the combined effect of the upstream shift of the onset of the 
primary 2 D  instability, as well as the growing of the primary amplitude. 

V. CONCLUSION 

We formulated the secondary three-dimensional instability problem for 
compressible boundary layers. The effect of finite amplitude two-dimensional 
T-S wave on the growth of three-dimensional subharmonics is investigated for a 
range of Mach numbers from 0 to 1.2. Numerical results for F =60E-6 show that 
the local (at fixed R) effect of compressibility on the secondary subharmonics 
may be stabilizing or destabilizing depending upon their spanwise wavenumbers, 
as well as the finite amplitude of the primary 2 D  wave. However, the overall 
effect of Increasing Mach number is a reduction in the growth rates and 
amplification factors of the secondary subharmonics, almost with no change In 
the streamwise location where this instability set8 in. 
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APPENDIX A 

= f ( g  z, + #I z, ) + D(f z3) + g u 7 + D(v 7) a\ 

699 



b, = 0 

I 
I 

700 

- - I  h -  - h Z  
a t = [ G f + T  g u - m Z R g ( g + i M ) t + R  P t ] Z ,  

A h - A 

- R t D Z ~  - R ( m g  + t D Z ~  + R P  ( m ,  + i m * )  t z 4  

- - - L  L - 4 - 
b t =  [ ( g + i % ) f  u + g f  u ]  Z, + (  f v + f  v ) Z Z + (  f D u + f  D u ) Z s  

- h - -\ 4 
- R  D y ( i m O ( u + m Z D v ) ) Z , - R (  i m q u + m 2 D v ] Z B  

d c - 
b 3 = i o ( (  f v - f  v ) Z , + [ (  f u + f ; ) g + f D v + f  D G ] Z ,  

- e -  + ( f v + f ) DZ, + [ 2v D T  + i o C (  v u - v u ) ]  F 



- I  -1 h h d 

+ [ T v - R  D (  p t) 1 2 , - R  [ t D Z ~ - P  t ( g + m g )  Z ,  

-1 h - - m ,  p t DZ3 - m p  ( i w  u + Dv ) 2, ] + R /.3 D( p t )  Z 3  

- L - 
b 4 = (  f u + f  u ) g Z q + (  f v + f  v ) Z 5  

2 2  2 - I  - h A  - I  
= { f G + T  g u - 2 M R D U ( D u + i o < v ) - P r  [ R t ( g  + 2 i o ( i i - w  - P I  = 5  

h 4 -  - + R I D (  D t  ) ] }  z , +  [ i ( d U  -u) t + v DT ] F -  M g u Z 6  

h * - I  4 4 h -I - 
- M v D Z 6 + [ T  v - P r - ' (  2 R D t + t R 9 ) ] Z g - R P r  t D Z g  

-1 h 4 - I  - - 
+ [ i o (  ( T  t - M p )  - 2 M p R  g ( i o C m t u - m D v )  ] 2, 

4 - 1  h - 2 M R [ p ( i # v  + Du)+ p t DU ] ( Z2 + z3 ) 

h - - I  + ( T D t  + f DT - M Dp ) Z3 

h - I  - - 
- 2 M R  p [  ( i m O ( ~ + m ~ D v ) D Z ~ + m ~ ( i ~ u + D v ) Z ~ ]  

d A h  2 -  - -  2 ,  
b s = {  ( f  u + f  z )  g - 2 M R  [ oc v v + i o C (  v D u - v D u  ) + m t W  u u  

2 - -  4 - + m o (  ( u v + u v ) + m2Dv Dv + Du Du ] 

- 
+ [ ] F + (  f v + f ; ) Z g  

A h  - d - 2 M R  ( t Du + t D';+ i o ( (  v - t v ) ( Z t +  g Z 3 )  

- - A h  d + ( f D t  + f D t  ) Z 3 -  2M R m Z  ( T  D v +  t Dv ) D Z 3  
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Fig.1 Growth rates of the primary 2D wave Fig.2 Amplification factors of the primary 
(F=60E-6) at different Mach numbers. 2D wave (F=60E-6) at different Mach 

numbers. 
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Fig.3 Growth rates of the primary 3D Fig.4 Amplification factors of the primary 
subharmonic wave (p30E-6 and B=.12) at 3D subharmonic wave (Fz30E-6 and Bz.12) at 
different Mach numbers. different Mach numbers. 
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Fig.5 Growth rates of the secondary 3 D  subharmonic at 
R=850 and A = . 0 1  as function of the spanwise wavenumber, 
for different Mach numbers. 

Fig.6 Effect of the primary amplitude A on the growth 
rates of the secondary 3 D  subharmonic at R=1050, for 
Mach numbers 0 and 0.8. 
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Fig.7 Effect of Reynolds number R on the growth rates 
of the secondary 3D subharmonics at M -0.8, fDr 
different primary amplitude A .  

-.01 - 

I Fig.8 Variation of the growth rates with R Fig.9 Variation of the amplification 
of a secondary 3D subharmonic at B=.15 for factors with R of a secondary 3D 
different Mach numbers. subharmonic at B=.15 for different Mach 

numbers . 
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